Physical Context Detection using Wearable Wireless Sensor Networks

نویسندگان

  • Muhannad Quwaider
  • Subir Biswas
چکیده

This paper presents the architecture of a wearable sensor network and a Hidden Markov Model (HMM) processing framework for stochastic identification of body postures and physical contexts. The key idea is to collect multi-modal sensor data from strategically placed wireless sensors over a human subject’s body segments, and to process that using HMM in order to identify the subject’s instantaneous physical context. The key contribution of the proposed multi-modal approach is a significant extension of traditional uni-modal accelerometry in which only the individual body segment movements, without their relative proximities and orientation modalities, is used for physical context identification. Through real-life experiments with body mounted sensors it is demonstrated that while the unimodal accelerometry can be used for differentiating activityintensive postures such as walking and running, they are not effective for identification and differentiation between lowactivity postures such as sitting, standing, lying down, etc. In the proposed system, three sensor modalities namely acceleration, relative proximity and orientation are used for context identification through Hidden Markov Model (HMM) based stochastic processing. Controlled experiments using human subjects are carried out for evaluating the accuracy of the HMMidentified postures compared to a naïve threshold based mechanism over different human subjects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاربردهای شبکه‌های حسگر بدنی در حوزه ی سلامت: مروری بر منابع

Background and Aim: Nowadays, one of the most important areas of application of information technology in the health sector is monitoring patients' condition. Recently utilization of body area sensor networks in healthcare had significant advances. The purpose of this article is to examine the applications of wireless health sensor networks in the field of health.  Materials and Methods: This ...

متن کامل

Intrusion Detection in Wireless Sensor Networks using Genetic Algorithm

Wireless sensor networks, due to the characteristics of sensors such as wireless communication channels, the lack of infrastructure and targeted threats, are very vulnerable to the various attacks. Routing attacks on the networks, where a malicious node from sending data to the base station is perceived. In this article, a method that can be used to transfer the data securely to prevent attacks...

متن کامل

FDMG: Fault detection method by using genetic algorithm in clustered wireless sensor networks

Wireless sensor networks (WSNs) consist of a large number of sensor nodes which are capable of sensing different environmental phenomena and sending the collected data to the base station or Sink. Since sensor nodes are made of cheap components and are deployed in remote and uncontrolled environments, they are prone to failure; thus, maintaining a network with its proper functions even when und...

متن کامل

The Effect of Radio Waves on the Quality and Safety of Wearable Sensors in Healthcare

The industrial Internet of Things (IoT) is aiming to interconnect humans, machines, materials, processes and services in a network. Wireless Sensor Network (WSN) comprises the less power consuming, light weight and effective Sensor Nodes (SNs) for higher network performance. Radio Frequency Identification (RFID) and sensor networks are both wireless technologies that provide limitless future po...

متن کامل

Unauthenticated event detection in wireless sensor networks using sensors co-coverage

Wireless Sensor Networks (WSNs) offer inherent packet redundancy since each point within the network area is covered by more than one sensor node. This phenomenon, which is known as sensors co-coverage, is used in this paper to detect unauthenticated events. Unauthenticated event broadcasting in a WSN imposes network congestion, worsens the packet loss rate, and increases the network energy con...

متن کامل

Outlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis

Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009